

Megatest/Logpro Training

Using the Megatest Regression &
 Automation Engine and the Logpro log file

analysis tools to do robust QA and
automation.

Matt Welland, 2013

Megatest Information

● Main development site:
– http://chiselapp.com/users/kiatoa/megatest

● Mirror
– http://www.kiatoa.com/fossils/megatest

● Source Forge Page
– http://sourceforge.com/projects/megatest

http://chiselapp.com/users/kiatoa/megatest
http://www.kiatoa.com/fossils/megatest
http://sourceforge.com/projects/megatest

Overview

● Background on Megatest
● Getting started

– Run management
– Creating a Megatest area
– Creating tests/tasks
– Getting information about runs and tests
– Write Logpro files

● Advanced Megatest topics
● Future Megatest development

What Can Megatest Do?

● Run tests with
– one or many steps
– dependencies on other tests
– on different hosts

● Report, record and roll up
– PASS, FAIL, WARN, CHECK, SKIPP
– Test generated data details

Megatest Architecture

● config files
– megatest.config
– runconfigs.config
– tests/<testname>/testconfig

● SQL database
– megatest.db

● Tools
– megatest (command line), dashboard (gui),

and logpro (log file analysis via rules)

How it Works

megatest -execute

remote host

megatest -server

megatest -runtest
ssh/netbatch

megatest.db
(sqlite3)

test process
megatest -step ...

http or zmq

direct access

remote hostremote hostremote host

(system)

dashboard

Terminology
target one or more “keys” separated by “/”, used to organize runs

hierarchically; examples include host, platform, stage (e.g.
development, final QA, alpha, beta) and so forth. E.g target =
x86/centos/dev where the keys are ARCHITECTURE, OS, and
RELEASE

run name a unique name (within a single target grouping) for a run, a
common idiom is to use week and day numbers: date +%V.%u

a “run” a group of tests run under a single target and run name

iterated test a single test run multiple times with variables iterated over a
range of values

state the state of a test; NOT_STARTED, RUNNING, COMPLETED
etc.

status the current status of this test given its state; PASS, FAIL, n/a

Megatest Design Philosophy

Wisdom is knowing when it is ok to bend or break the rules.
Megatest strives to make it straightforward to do things right but still possible to
get the job done when the rules must be bent or broken.

Repeatable this test result can be recreated in the future

Encapsulated the area where the test was run is self-contained and all inputs
and outputs to the test can be found in the test run area.

Traceable environment variables, host OS and other possibly influential
variables are captured and kept recorded.

Relocatable the test area can be checked out and the tests run anywhere

Immutable once this test is run it cannot be easily overwritten or
accidentally modified.

Deployable anyone on the team, at any site, at any time can run the tests

Self-checking strive for directed or self-checking test as opposed to delta
based tests

Quick Look

dashboard

logpro output

run progress seen in xterm

test control panel
(in background)

Run Management

● Launching runs
– command line; “megatest -runtests”
– test control panel; push “run” then “execute”

● Removing runs
– “megatest -remove-runs”

● Rolling up runs
– “megatest -rollup”

Task/Test Management
● Killing jobs

– In the gui set status to “KILLREQ” and the
job will be killed.

– Command line example:

● Changing state and status of tests
– Use -set-state-status, see the killing jobs

example above.
● Add “-rerun FAIL” to your launch command

line to force the re-run of failed jobs

 megatest -set-state-status KILLREQ,FAIL -target ubuntu/nfs/none \
 :runname % -testpatt %/% :state RUNNING

Getting information

● -list-runs pattern
– lists runs with runname matching pattern.

● -extract-ods
– creates an open-document spreadsheet

● Miscellaneous queries
-list-disks
-list-targets
-list-db-targets
-find-files, -find-paths

dashboard

a “run”

a “test”

a “test item”

runs filter

tests filter

test control panel

meta data

run info
debug
and run
controls

remote host info

test info

step records

test
data

Config File Syntax
The config file syntax was designed to be:

– simple and forgiving to syntax mistakes
– easy to understand and trace where values originated
– expressive enough for complex needs.

Example description of the example

Sections [setup] Variables defined on subsequent lines
will be in the “setup” section

Variables ABC 1 Variable “ABC” will have the value “1”

[] directives [include a.txt] include file “a.txt”, see manual for all
directives

#{ } text
substitutions

#{shell ls $PWD} replace the #{ … } with the output of the
ls $PWD command. Note that newlines
are replaced with spaces.

Setup Megatest Area (configs)

● Config files
– megatest.config

● Target
– One or more “keys”
– Choose carefully! They cannot be changed

after your megatest.db is created
● links area
● runs disk (can add more over time)

– runconfigs.config
● can be empty initially

Example Config Files

megatest.config runconfigs.config
[fields]
SYSTEM TEXT
RELEASE TEXT

[setup]
Adjust max_concurrent_jobs to limit how much you load your
machines
max_concurrent_jobs 50

This is your link path, best to set it and then not change it
linktree #{shell realpath #{getenv PWD}/../simplelinks}

Job tools control how your jobs are launched
[jobtools]
useshell yes
launcher nbfind

You can override environment variables for all your tests here
[env-override]
EXAMPLE_VAR example value

As you run more tests you may need to add additional disks
the names are arbitrary but must be unique
[disks]
disk0 #{shell realpath #{getenv PWD}/../simpleruns}

[default]
ALLTESTS see this variable

Your variables here are grouped by targets [SYSTEM/RELEASE]
[SYSTEM_val/RELEASE_val]
ANOTHERVAR only defined if target is SYSTEM_val/RELEASE_val

Example testconfig

testconfig
Add additional steps here. Format is "stepname script"
[ezsteps]
step1 step1.sh
step2 step2.sh

Test requirements are specified here
[requirements]
waiton setup
priority 0

Iteration for your tests are controlled by the items section
[items]
COMPONENT parser datastore transport analyzer

test_meta is a section for storing additional data
on your test
[test_meta]
author matt
owner matt
description An example test
tags tagone,tagtwo
reviewed never

Setup Megatest Area (tests)

● Tests
– tests/<yourfirsttest>/testconfig

● Can use the helper “wizards”
megatest -gen-megatest-area
megatest -gen-megatest-test

Setup for Run “Flavors”

● runconfigs.config
[default]
VARS here are inherited by all runs

[some/target]
VARS here inherited in some/target runs

● NB// the last specified definition overrides
prior definitions.

Setup Tests/Tasks

● A test or task is a set of scripts and data
designed to do something or test
something.

● Create in tests directory
● Test name limitations

– No spaces or special characters
– [a-zA-Z0-9_] and “-” are ok.

The testconfig file [setup]

● [setup]
runscript scriptname.sh

– The script must exist in the testconfig
directory and be executable

– Output from the script is NOT captured by
Megatest directly

– The script can be an executable or written
in any scripting language

The testconfig file [ezsteps]

● [ezsteps]
step1name step1script.sh

– The script “step1script.sch” will be executed
and its output redirected to the file
step1name.log.

– If a logpro file step1name.logpro exists it
will be used to process the logfile
step1name.log and generate the
PASS/FAIL/WARN status.

The testconfig file [items]

[items]
VAR1 value11 value12 value13 …
VAR2 value21 value22 value23 ...

– This will iterate this test with all possible
combinations of VAR1 and VAR2 values.

● Results:
– value11/value21, value11/value22,

value11/value23, value12/value21,
value12/value22, value12/value23 ...

The testconfig file [itemstable]

[itemstable]
VAR1 value11 value12 …
VAR2 value21 value22 …

– This will iterate over the test with only
aligned value combinations.

● Result:
– value11/value21, value12/value22 …

NOTE: You can combine items and itemstable but they work independently
and the result may not be what you expect.

The testconfig file [requirements]
[requirements]
waiton <testname … >

● this test will not be launched until the listed
tests are COMPLETED and PASS,
WAIVE or SKIP.

jobgroup <groupname>
● this test will be added to the named job

group and the relevant max concurrent
jobs will apply

toplevel <testname>
● this test will proceed once all it waiton tests

are completed with any status.

The testconfig file[test_meta]

● author matt
● owner bob
● description The description can run to

multiple lines but subsequent lines must be
indented with spaces.

● tags first,single
● reviewed 09/10/2011, by Matt

Megatest Calls in Tests

● -step stepname
– mark the start or end of a step

● -test-status
set the state and status of a test

● -setlog logfname
set the path/filename to the final log relative
to the test directory.

● -set-toplog logfname
set the log for a series of iterated tests

Other Megatest calls

● -summarize-items
– for an itemized test create a summary html

(usually called automatically)
● -m comment

– insert a comment for this test, can be used
with any of the above calls but only one
comment is stored per test

● -test-files or -test-paths
– Use the database to search for files or

paths in the test run area

Example Megatest in-test calls

● -step
$MT_MEGATEST -step step1 :state start :status
running -setlog step1.html

● -test-status
(Mark a test as completed and trigger a rollup to the parent
test of overall status)
$MT_MEGATEST -test-status :state COMPLETED :status
AUTO

● -test-path
export EZFAILPATH2=`$MT_MEGATEST -test-paths -target

$MT_TARGET :runname $MT_RUNNAME -testpatt
runfirst/a%`

Logpro
● Logpro syntax

Logpro uses scheme calls directly and the
full power of scheme is available. However
99% of logpro rule files will not need
anything other than the base logpro rules.

Rule Example Purpose
expect:error (expect:error in “Logf” = 0 “Err desc” #/err1/i) Flags errors matching the pattern err1

expect:ignore (expect:ignore in “Logf” < 10 “Err desc” #/err2/i) Ignore errors matching the pattern err2

expect:warning (expect:warning in “Logf” = 0 “Desc” #/warn1/i) Lines matching pattern warn1 flagged as warning

expect:required (expect:required in “Logf” = 1 “Desc” #/reqrd/i) Line matching pattern reqrd must exit in log file

expect:waive (expect:waive in “Logf” = 0 “Err desc” #/err3/i) Waive error matching pattern err3

expect:value (expect:value in “Logf” 10 1 “Err desc” #/(\d+)/i) The number matched must be 10 +/- 1

trigger (trigger “start” #/Start logfile/) Set trigger “start” on line with “Start logfile” string.

section (section “Logf” “start” “end”) Section Logf starts at trigger start, ends at end

hook:add (hook:add “err1” “err1.pl #{msg}”) On err1 call the err1.pl script with msg as param

Advance Logpro Usage

● Data collection
– Capturing with logpro
– Rolling up with Megatest

Direct Access to Megatest
Functions

● -repl
● -load

Future Megatest Development

Advanced Topics

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

