

Megatest/Logpro Training

Using Megatest and Logpro for creating flows and
automation for software, EDA, or Unix infrastructure

at the unit, functional, and regression levels.

Matt Welland, 2016

Training Overview

• Background
• Getting started

– Dashboard/command line (existing flow)
● Running tests and managing runs

– Creating a flow
● configs: megatest, runconfig
● tests/tasks: testconfig, logpro

– Getting information about runs and tests
• Preview of advanced Megatest topics
• Future Megatest development

What does Megatest do?
• Run tests or tasks with

– one or many steps
– dynamic test dependency calculation
– on multiple hosts
– multi-level iteration

• Report, record and roll up state, status and data
– state: RUNNING, COMPLETED
– status: PASS, FAIL, WARN, CHECK
– data: slew rate, count of failed assertions etc.

• Organize “runs” by project specific variables

Megatest Design Philosophy
Factors for Sustainable Automation

Wisdom is knowing when it is ok to bend or break the rules!
Megatest strives to make it straightforward to do things right but still possible to get the
job done when the rules must be bent or broken.

Self-checking write directed or self-checking tests (avoid delta based tests)

Traceable environment variables, host OS, etc. captured and recorded.

Immutable once run do not modify, reuse or overwrite tests.

Repeatable this test result can be recreated in the future

Relocatable the test area can be checked out and the tests run anywhere

Encapsulated test run area is self-contained with all inputs and outputs kept

Deployable anyone on the team, at any site, at any time can run the tests

Dashboard/Test Control Panel

• dashboard
– browse runs
– filtering

● target
● runname
● test pattern
● state/status

– launch runs
• test control panel

– xterm
– view log
– cleanrunexecute

Terminology
target one or more “keys” separated by “/”, used to organize runs

hierarchically; examples include platform, release, architecture,
stage (e.g. development, final QA, alpha, beta) and so forth.
E.g target = x86/centos/dev where the keys are
ARCHITECTURE, OS, and RELEASE. A target is a context.

run name unique name (within a single target grouping) for a run, a
common idiom is to use week and day numbers:
e.g w41.6 (use unix command: date +w%V.%u)

run a group of tests run under a single target and run name

test or task a self-contained area with scripts and data to achieve some
testing or automation goal

iterated test a single test run multiple times with variables iterated over a
range of values

state the state of a test; NOT_STARTED, RUNNING, COMPLETED
etc.

status the current status of this test given its state; PASS, FAIL, n/a

Architecture

• config files, static state, human input
– megatest.config
– runconfigs.config
– tests/<testname>/testconfig

• SQL database, dynamic state
– megatest.db

• Tools
– megatest (command line), dashboard (gui), and

logpro (log file analysis via rules), refdb (text
based data base)

Getting Help

• Command line help:
megatest -h
or try: viewscreen “megatest -h |& less”

• The user manual:
megatest -manual

dashboard

a “run”

a “test”

a “test item”

runs filter

tests filter

Do live demo of dashboard here.

test control panel

meta data

run info
Controls
(debug,
run &

state/status remote host info

test info

step records Test data

Do live demo of test control panel here.

Run Management

• Launching runs
– command line: “megatest -run ...”
– test control panel: push “run” then “execute”

• Removing runs
– command line: “megatest -remove-runs ...”

• Archiving runs
– command line: “megatest -archive ...”

note: all these commands require the use of additional selector
parameters such as -target and -runname

Task/Test Management

• Killing jobs
– In the gui set status to “KILLREQ” and the job

will be killed.
– Command line example:

• Changing state and status of tests
– Use -set-state-status, see example above.

• Add “-rerun FAIL” to your launch command
line to force the re-run of failed jobs

 megatest -set-state-status KILLREQ,FAIL -target ubuntu/nfs/none \
 -runname w10.2a -testpatt %/% -state RUNNING,LAUNCHED

Test Selectors

• -testpatt testpattern/itempattern
– wild card is “%”

% synonymous with %/%
%/ toplevel tests (no items)

• comma separate multiple patterns (OR)
%/,%/a/b All toplevel + any items matching a/a

Getting information

• -list-runs pattern
– lists runs with runname matching pattern.

• -extract-ods
– creates an open-document spreadsheet

• Miscellaneous queries
-list-disks
-list-targets
-list-db-targets

Config File Syntax
The config file syntax was designed to be:

– simple and forgiving to syntax mistakes
– easy to understand and trace where values originated
– expressive enough for complex needs.

Example description of the example

Sections [setup] Variables defined on subsequent lines
will be in the “setup” section

Variables ABC 1 Variable “ABC” will have the value “1”

[] directives [include a.txt] include file “a.txt”, see manual for all
directives

#{ } text
substitutions

#{shell ls $PWD} replace the #{ … } with the output of the
ls $PWD command. Note that newlines
are replaced with spaces.

Config File Text Substitutions

[include filename] Includes filename. Ignores if filename
does not exist

[system command] replaced with output from command

#{shell command} replaced with output from command

#{system command} replaced with the exit code of
command

#{scheme (schemecode)} replaced with the result of evaluating
(schemecode)

#{getenv VAR} replaced with the value of
environment variable VAR

#{get section var} replaced with the value of var from
section

#{rget var} use runconfig rules to get a variable

NOTE: [] substitutions can be deferred by megatest and executed just
before launching a test but #{ } substitutions are done as each line is read.

Creating a Megatest Area

• Required Config files
– megatest.config
– runconfigs.config

• Tests
– testconfig

• Can use the helper “wizards”
megatest -create-megatest-area
megatest -create-test <testname>

(demo of -create-megatest-area and -create-test)

Setup Megatest Area (Review)

• Config files
– megatest.config

● Target A/B/C ...
– One or more “keys” (the “A”, “B” and “C”)
– Choose carefully! They cannot be changed

after your megatest.db is created
● links area (the link tree to all your tests)
● runs disk (can add more over time)

– Lowest usage disk used first
– Link tree symlinks point into run areas

– runconfigs.config
● can be empty initially

Required Config Files

megatest.config runconfigs.config
[fields]
PLATFORM TEXT
OS TEXT

[setup]
Adjust max_concurrent_jobs to limit parallel jobs
max_concurrent_jobs 50

This is your link path, best to set it and then not change it
linktree #{getenv MT_RUN_AREA_HOME}/linktree

Job tools control how your jobs are launched
[jobtools]
useshell yes
launcher nbfake

You can override environment variables for all your tests here
[env-override]
EXAMPLE_VAR example value

As you run more tests you may need to add additional disks
the names are arbitrary but must be unique
[disks]
disk0 #{getenv MT_RUN_AREA_HOME}/runs

[default]
ALLTESTS see this variable

Your variables here are grouped by targets [SYSTEM/RELEASE]
[SYSTEM_val/RELEASE_val]
ANOTHERVAR only defined if target is SYSTEM_val/RELEASE_val

Example testconfig

testconfig
Add additional steps here. Format is "stepname script"
[ezsteps]
step1 step1.sh
step2 step2.sh

Test requirements are specified here
[requirements]
waiton setup
priority 0

Iteration for your tests are controlled by the items section
[items]
COMPONENT parser datastore transport analyzer

[logpro]
step1 ;;
 (expect:error in “LogFileBody” = 0 “No errors” #/err/i)

test_meta is a section for storing additional data
on your test
[test_meta]
author matt
owner matt
description An example test
tags tagone,tagtwo
reviewed never

Megatest Information

• Main development site
http://www.kiatoa.com/fossils/megatest

http://www.kiatoa.com/fossils/logpro

• Mirror
http://chiselapp.com/user/kiatoa/repository/megatest

http://chiselapp.com/user/kiatoa/repository/logpro

• SourceForge Page
http://sourceforge.com/projects/megatest

http://www.kiatoa.com/fossils/megatest
http://www.kiatoa.com/fossils/logpro
http://chiselapp.com/user/kiatoa/repository/megatest
http://chiselapp.com/user/kiatoa/repository/logpro
http://sourceforge.com/projects/megatest

Backup

How it Works

megatest -execute

remote host

megatest -run

ssh/netbatch

megatest.db
(sqlite3)

test process
megatest -step ...

remote hostremote hostremote host

(system)

dashboard

A Day in The Life ...

dashboard

run progress seen in xterm

test control panel
(in background)

logpro output

Writing a Test “checkspace”

• Write a test that checks for available space
– tests can “waiton” this test before running.

• Our test will use this simple script,
checkspace.sh:

Note: Files for this example can be found in
“example” dir in Megatest distribution

#!/bin/bash -e
freespace=`df -k $DIRECTORY | grep $DIRECTORY | awk '{print $4}'`
if [[$freespace -lt $REQUIRED]];then
 echo "ERROR: insufficient space on $DIRECTORY"
 exit 1
else
 echo "There is adequate space on $DIRECTORY"
fi

Writing a Test “checkspace”

• Commands to create test “checkspace”
– mkdir -p linktree runs tests/checkspace
– cd tests/checkspace
– vi checkspace.sh
– chmod a+x checkspace.sh
– vi testconfig

Add steps here. Format is "stepname script"
[ezsteps]
checkspace checkspace.sh

Iteration for your tests are controlled by the items section
[itemstable]
DIRECTORY /tmp /opt
REQUIRED 1000000 100000

Writing a test “checkspace”

• Write a logpro file to analyze your results
(expect:error in "LogFileBody" = 0 "Any error" #/err/i)
(expect:required in "LogFileBody" = 1 "Sucess signature" #/adequate space/)

.
|-- megatest.config
|-- megatest.db
|-- monitor.db
|-- runconfigs.config
`-- tests
 `-- checkspace
 |-- checkspace.logpro
 |-- checkspace.sh
 `-- testconfig

Runing the “checkspace” Test

Run your test
From the directory where “megatest.config”
exists run these commands:

dashboard &
megatest -runtests % -target x86/suse10 :runname w`date +%V.%u`

The “checkspace” Test Directories

|-- linktree
| `-- x86
| `-- suse10
| `-- w13.1
| `-- checkspace
| |-- opt
| | `-- 100000 -> /nfs/ch/disks/ch_unienv_disk005/qa_mrwellan/interim/src/megatest/example/runs/x86/suse10/w13.1/checkspace//opt/100000
| |-- testdat.db
| `-- tmp
| `-- 1000000 -> /nfs/ch/disks/ch_unienv_disk005/qa_mrwellan/interim/src/megatest/example/runs/x86/suse10/w13.1/checkspace//tmp/1000000
|-- runs
| `-- x86
| `-- suse10
| `-- w13.1
| `-- checkspace
| |-- opt
| | `-- 100000
| | |-- NBFAKE-2013WW13.1_09:57:48
| | |-- checkspace.html
| | |-- checkspace.log
| | |-- checkspace.logpro
| | |-- checkspace.sh
| | |-- megatest.csh
| | |-- megatest.sh
| | |-- mt_launch.log
| | |-- testconfig
| | `-- testdat.db
| `-- tmp
| `-- 1000000
| |-- NBFAKE-2013WW13.1_09:57:49
| |-- checkspace.html
| |-- checkspace.log
| |-- checkspace.logpro
| |-- checkspace.sh
| |-- megatest.csh
| |-- megatest.sh
| |-- mt_launch.log
| |-- testconfig
| `-- testdat.db

Setup for Run “Flavors”

• runconfigs.config
[default]
VARS here are inherited by all runs

[some/target]
VARS here inherited in some/target runs

• NB// the last specified definition overrides prior
definitions.

Setup Tests/Tasks

• A test or task is a set of scripts and data
designed to do something or test something.

• Create in tests directory
• Test name limitations

– No spaces or special characters
– [a-zA-Z0-9_] and “-” are ok.

The testconfig file [setup]

• [setup]
runscript scriptname.sh

– The script must exist in the testconfig directory
and be executable

– Output from the script is NOT captured by
Megatest directly

– The script can be an executable or written in
any scripting language

The testconfig file [ezsteps]

• [ezsteps]
step1 script1.sh

– The script “script1.sh” will be executed and its
output redirected to the file step1.log.

– If a logpro file step1.logpro exists it will be
used to process the logfile step1name.log and
generate the PASS/FAIL/WARN status.

The testconfig file [items]

[items]
VAR1 value11 value12 value13 …
VAR2 value21 value22 value23 ...

– This will iterate this test with all possible
combinations of VAR1 and VAR2 values.

• Results:
– value11/value21, value11/value22,

value11/value23, value12/value21,
value12/value22, value12/value23 ...

The testconfig file [itemstable]

[itemstable]
VAR1 value11 value12 …
VAR2 value21 value22 …

– This will iterate over the test with only aligned
value combinations.

• Result:
– value11/value21, value12/value22 …

NOTE: You can combine items and itemstable but they work independently and the
result may not be what you expect.

The testconfig file [requirements]

[requirements]
waiton <testname … >

● this test will not be launched until the listed tests
are COMPLETED and PASS, WAIVE or SKIP.

jobgroup <groupname>
● this test will be added to the named job group

and the relevant max concurrent jobs will apply

mode toplevel
● this test will proceed once all it waiton tests are

completed with any status.

The testconfig file[test_meta]

• author matt
• owner bob
• description The description can run to multiple

lines but subsequent lines must be indented
with spaces.

• tags first,single
• reviewed 09/10/2011, by Matt

Megatest Calls in Tests

• -step stepname
– mark the start or end of a step

• -test-status
set the state and status of a test

• -setlog logfname
set the path/filename to the final log relative to
the test directory.

• -set-toplog logfname
set the log for a series of iterated tests

Other Megatest calls

• -summarize-items
for an itemized test create a summary html
(usually called automatically)

• -m comment
insert a comment for this test, can be used with
any of the above calls

• -test-files or -test-paths
Use the database to search for files or paths in
the test run area

Example Megatest in-test calls

• -step
$MT_MEGATEST -step step1 :state start :status
running -setlog step1.html

• -test-status
(Mark a test as completed and trigger a rollup to the parent test of
overall status)
$MT_MEGATEST -test-status :state COMPLETED :status
AUTO

• -test-path
export EZFAILPATH2=`$MT_MEGATEST -test-paths -target

$MT_TARGET :runname $MT_RUNNAME -testpatt
runfirst/a%`

Environment Variables

MT_TARGET Contains the target for this run

MT_RUNNAME The run name

MT_MEGATEST Full path to megatest executable

MT_TEST_RUN_DIR The area where the test itself runs

MT_TEST_NAME The name of the current test

MT_ITEM_INFO Data on the iteration

MT_RUN_AREA_HOM
E

The base area for this regression

MT_CMDINFO Used internally by megatest

MT_DEBUG_MODE Used to propogate debug mode to
underlying megatest calls.

MT_LINKTREE Full path to the link tree, use to find tests

Additional Features

• Run locking
– Prevents removing or adding tests to a run

-lock
-unlock

Logpro
• Logpro syntax

Logpro uses scheme calls directly and the full power of
scheme is available. However 99% of logpro rule files
will not need anything other than the base logpro rules.

• Documentation at: http://www.kiatoa.com/fossils/logpro

Rule Example Purpose
expect:error (expect:error in “Logf” = 0 “Err desc” #/err1/i) Flags errors matching the pattern err1

expect:ignore (expect:ignore in “Logf” < 10 “Err desc” #/err2/i) Ignore errors matching the pattern err2

expect:warning (expect:warning in “Logf” = 0 “Desc” #/warn1/i) Lines matching pattern warn1 flagged as warning

expect:required (expect:required in “Logf” = 1 “Desc” #/reqrd/i) Line matching pattern reqrd must exit in log file

expect:waive (expect:waive in “Logf” = 0 “Err desc” #/err3/i) Waive error matching pattern err3

expect:value (expect:value in “Logf” 10 1 “Err desc” #/(\d+)/i) The number matched must be 10 +/- 1

trigger (trigger “start” #/Start logfile/) Set trigger “start” on line with “Start logfile” string.

section (section “Logf” “start” “end”) Section Logf starts at trigger start, ends at end

hook:add (hook:add “err1” “err1.pl #{msg}”) On err1 call the err1.pl script with msg as param

http://www.kiatoa.com/fossils/logpro

Advance Logpro Usage

• Data collection
– Capturing with logpro
– Rolling up with Megatest

Waiver Propagation

This test failed and was manually
set to WAIVED in the next run

The WAIVED status was propagated
because the criteria set in testconfig
were all met

This test uses diff and logpro to
determine if ok to propagate WAIVED

Waiver Propagation

logpro_file input_glob

matching file(s) will be diff'd with previous run and logpro applied

if PASS or WARN result from logpro then WAIVER state is set

#

[waivers]

waiver_1 logpro lookittmp.log

[waiver_rules]

This builtin rule is the default if there is no <waivername>.logpro file

diff diff %file1% %file2%

This builtin rule is applied if a <waivername>.logpro file exists

logpro diff %file1% %file2% | logpro %waivername%.logpro %waivername%.html

waiver name

waiver rule type

file to apply rule

example rules

Direct Access to Megatest Functions

• -repl
– This will start a read-eval-print loop allowing you to

directly call Megatest calls.
• -load test.scm

– This will load the scheme source code and exectute it
in the Megatest context.

New Features in v1.55

• Task/Test search path
– organize your tests in different directories
– reuse tests from other flows

• Automatic SKIP handling
– Crontab friendly runs (can overlap)

• “itemmatch” mode
– iterated tests block only on previous same-named

iteration

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48

